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Shared Principles Between the Computing 
and Biological Sciences 

 
Report on an NSF-sponsored Workshop 

 
 

While the biological and computing sciences have a long 
history of exchanging ideas, traditional cross-disciplinary 
research has generally shed light on a problem of greater 
interest to one field than the other.  Due to recent 
developments, it is now possible to envision attacking 
research problems of interest to both communities using 
principles shared by natural and fabricated systems. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration from the talk by Jeff Krichmar, "The Brain is Embodied and the Body is Embedded in the Environment." 
 

 

As an important step towards ushering in a new era of 
research that transcends previously perceived boundaries 
between the computing and biological sciences, twenty-five 
leading investigators drawn from both fields met at a 
workshop held in Arlington Virginia on May 25-26, 2010.  
The current research of workshop participants embodies 
shared organizing principles and in many cases defies 
classification into one field or the other.  This report 
presents the synthesis of ideas that emerged from the wide-
ranging presentations and discussions.  
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I. Introduction 
 
The purpose of this workshop was to bring 
together leading biologists and 
computational scientists interested in 
exploring shared principles between 
computing and biology.  These two 
communities have a shared history of mutual 
influence where the transfer of concepts and 
tools has resulted in significant advances in 
both fields.  Typically, the computing 
community develops techniques useful to 
the biological sciences such as mathematical 
models or search algorithms, while the 
biological sciences community develops 
hypotheses, which inspire new 
computational techniques such as swarm 
theory, genetic algorithms, and learning 
theories.  This workshop was intended to 
take the discussion further, and ask to what 
extent there are larger organizing principles 
that are shared between computer science 
and biology, and whether the exploration of 
such shared principles might enable new and 
deeper collaborations between the two 
communities.  The ultimate goal of the 
workshop was to yield of set of a and 
recommendations that will be helpful to 
NSF program officers in identifying new 
directions, designing new cross-disciplinary 
programs, and facilitating collaborations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. Major Themes of the 
Workshop 
 
A. Information and Computation as a 
Framework for Advancing Theory in 
Biology 
 
One of the key differences between 
computing and biology is the role of 
abstraction and the ability to define 
functionality independently of mechanism.  
In this realm, computing is permeated with 
abstract notions of functionality, whereas 
biology is almost entirely driven by 
empirical observations.  Some examples of 
the extent to which computing is a "science 
of abstraction" include Boolean gates, 
formal languages, Chomsky hierarchy of 
machines/complexity, high-level 
programming languages, virtual machines, 
programmability, symbolic systems, syntax 
vs. semantics, compositionality, 
executability, and encapsulation.  
 
Biology lacks a framework for a theory 
based on principles.  The few theories that 
have made true contributions, most notably 
Darwin’s theory of evolution by natural 
selection, the Mendelian theory of the gene 
or Burnet’s theory of clonal selection in the 
immune system, and to a much lesser extent 
the contemporary theories of consciousness 
 
 
 
 
 
 
 
 
 
 
 
 

Proteins:  From sequence to structure to function.  Illustration from the talk with the same title by Chris Bailey-Kellogg. 
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 (e.g., Edelman’s “neural Darwinism,” 
Baars’ and Changeux’ “global workspace,” 
Damasio’s “core self-perception,” or 
immune system, and to a much lesser extent 
Penrose’s somewhat eccentric “quantum 
microtubule” theory), have all involved a 
mechanistic description which is then 
superseded, upon being proven, by the 
mechanistic description itself.  That is, 
biological research is so heavily mechanism-
driven that the theoretical aspect of these 
problems declines in significance in direct 
proportion to how much of the detailed 
mechanisms are worked out.  Biology needs 
a language of "functionality" to describe the 
'function' of the computation rather than the 
mechanics of biochemistry or 
electrophysiology (e.g., as exemplified in 
the work of Luca Cardelli). 
 
Existing models for such a theoretical base 
include information theory and control 
theory (e.g., top-down and bottom-up modes 
of control), but care must be taken not to 
apply these approaches too literally.  In 
other words, there is a major need for theory 
development. 
 
 
B. Computing as a Source of Modeling 
Tools 
 
In some sense, the most fundamental shared 
principle between computing and biology is 
the need to deal with complex, dynamic, 
large-scale, asynchronous real-time systems.  
The science of computing has made huge 
progress in developing hardware and 
software tools for modeling, building, 
controlling, and analyzing such systems.  
Computer scientists can thus offer essential 
tools—both conceptual and practical—for 
building large-scale, high-performance 
models of biological systems.  Many of the 
same methods developed for computational 
modeling and analysis in other fields 
(physics, chemistry, materials science, and 
so on) can be adapted to the needs of 

biological modelers, who often lack well-
designed modeling platforms at the systems 
level.  Computational and information 
theoretical principles can also contribute to 
issues of coding, redundancy, error 
correction, and the design of experiments 
that arise in building and using very large-
scale models.  
 
 
C. Biology Versus Traditional 
Computer Science 
 
As noted above, computer scientists have 
developed a number of new methods and 
algorithms that were inspired by biological 
systems, such as neural networks, genetic 
algorithms, artificial immune systems, ant-
colony optimization and amorphous 
computing, among others.  However, as was 
pointed out several times at the workshop, 
computer science has barely begun to mine 
the possibilities for inspiration that biology 
has to offer.  
 
There exist vast differences between 
present-day computing systems and what we 
know about biological information 
processing.  For example, current computing 
systems are typically centralized, localized, 
serial, deterministic, and digital/symbolic, 
whereas biological information processing is 
decentralized, distributed, massively 
parallel, stochastic, non-symbolic, and able 
to seamlessly switch between digital and 
analog modes.  In biology, information is 
often encoded as rates or as concentrations, 
which must be physically sampled over time 
to be “read”. Moreover, biological systems 
seamlessly integrate information over 
multiple spatial and temporal scales; no such 
capability exists in even the most 
sophisticated computing systems. In contrast 
to current computing systems, which require 
synchronization in many aspects of their 
processing, biological systems often operate 
with asynchronous components.  Available 
computing systems also require components  
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Crosstalk and insulation:  Computers versus the brain.  Illustration from the talk by Hana El-Samad, "Design Principles 
for Cellular Organization."  
 
to be reliable, with very low error 
probabilities, whereas biological systems 
operate with unreliable components that 
undergo frequent failures.  Current 
computing systems require precise, finite 
calculations, whereas biological information 
processing thrives on approximation and 
open-endedness.  In present-day computing 
systems there is typically a one-to-one 
relationship between “algorithm” and 
“function”, whereas biological systems are 
intensely pleiotropic, meaning that 
components are used and reused for multiple 
functions.  Moreover, in biological systems, 
function is often defined by physical 
structure (e.g., binding between two 
molecules or connectivity structure in a 
network) instead of via a serial algorithm.  
As one additional example, biological 
systems automatically learn relevant features 
and associations from the environment.  
Learning and adaptation is integral to the 
system and is continual.  In computer 
science, learning is an "add-on component," 
if present at all. 
 
It is still an important open question to what 
extent and in what situations these features 
of biological systems might be beneficial in  
the computing systems of the future, which 
many believe will need to become more 
adaptive, flexible, and “life-like,” and may 

well be implemented with biomolecular or 
other molecular-scale “hardware”.  This 
question can be resolved only via true 
collaborations between biologists and 
computational scientists. 
 
 
III. Specific Topics for 
Collaborations 
 
During the workshop, the participants were 
asked to discuss specific problems related to 
common principles that would benefit from 
collaborations between biological and 
computational scientists over the next five-
to-ten years.  The list below represents only 
a sampling of such topics.  It is by no means 
exhaustive but is meant to spur further 
discussion and brainstorming.  
 

 Functions of stochasticity.  What are the 
sources and functions of stochasticity or 
"noise" in biological systems?  There are 
myriad examples of stochasticity at all 
levels in living systems, such as 
stochastic expression of genes, noisy 
neural firing, generation of “random” 
immune cell receptor shapes, and 
unpredictable variability in heart rate, to 
name but a few examples.  There have 
been numerous hypotheses concerning 
the sources and functions of such 

C i i C i i f h lk b H El S d "D i P i i l
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stochasticity.  Are there any unifying 
principles underlying these phenomena, 
including those that relate to information 
processing?  Can research on the 
benefits of stochasticity and randomness 
in the field of computing be useful in 
understanding the functions of biological 
stochasticity?  

 
 Better understanding of network 
properties of biological systems, and 
connections between network 
structure and function.  There was 
much discussion at the workshop 
concerning the relevance of network 
science to the study of biological 
networks.  A number of major questions 
were raised that would benefit from 
collaborations among computational 
scientists, theoretical network scientists, 
and biologists, including the following:  
What are the functionally crucial 
network properties of biological 
systems, e.g., structure and dynamics, 
hubs, etc.?  Which ones matter most to 
system output, and which ones reflect 
different functional system states?  To 
what extent is function grounded in 
network structure, and how does this 
function come about from underlying 
structure?  How can structure (including 
modularity) in such networks be best 
uncovered from data?  How does 
functional activity in a living system 
affect underlying network structure?  
What drives signaling in networks, and 
what network perturbations drive 
failures?  What topological properties of 
signaling networks allow them to 
adapt—that is, reset themselves after 
responding to a stimulus?  How do 
biological networks allow efficient 
navigation without global knowledge of 
the network structure?  
 

 Neural code.  How is information 
embodied and transferred in the nervous 

system?  Is there a true neural code, in 
the sense that the activities of individual 
neurons or small groups of neurons can 
encode information useful to the system 
as a whole?  If so, how would we go 
about decoding it?  What and where are 
its coders and decoders?  If not, then 
what are the alternatives (e.g., 
combinatorial interactions among brain 
regions)?  Similarly, how and to what 
extent is the wiring of the brain 
embodied in genes?   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Protein interaction networks.  Illustration from the talk 
by Luis Amaral, "Networks and My Other Playgrounds." 

 
 Plasticity versus stability.  How can 

we understand the interactions and 
tradeoffs between the necessity for 
plasticity and the need for stability?  
How do biological systems maintain 
functional integrity while allowing 
basic components to continually 
change?  Similarly, how do these 
systems maintain homeostasis in the 
face of the continual fluctuations with 
which they are confronted in daily life? 
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 Multiscale analysis.  Adaptation and 
integration occur over many scales, 
both spatial (e.g., molecules, cells, 
networks, organisms, ecosystems), as 
well as temporal (e.g., milliseconds to 
millennia).  What is “the state” of an 
organism when you consider all spatial 
and temporal scales simultaneously?  
How can this be treated 
mathematically?  A typical approach is 
to separate the scales, but this sacrifices 
many important properties.  Is there a 
better way?  Where are the joints that 
allow for spatial or temporal 
decomposition, given the broad 
distribution of activities?  Can computer 
science generate relevant abstractions?  
What is the nature of the computations 
that are being done?  Can we develop 
appropriate computational abstractions 
(e.g. formal languages) in 2-, 3-, and 4-
dimensions? 

 
 
 
 
 
 
 
 
 
 
 
 
 
A Systems Perspective on Learning.  Illustration from the talk 
by Randy Beer, "Dynamical Analysis." 
 

 Building hybrid systems.  How can 
information in the brain be used by 
machine learning classifiers to create 
hybrid brain/computer systems?  Do 
these require a full understanding of the 
hypothetical neural code, or can they be 
made to interpret correlations 
emanating from neural activity?  Are 
such correlations a possible window 

into the actual nature of neural 
embodiment itself? 

 
 Towards strengthening the 

theoretical framework of biology.  
The paucity of theories that have made 
robust contributions to biology begs the 
question of whether the field has any 
fundamental principles, or is it just a 
collection of bits and pieces?  That is, 
does biology have enough underlying 
generality to permit the kind of 
abstraction and theoretical foundation 
that computer science relies upon?  Is 
the biologist's preference for detailed 
mechanism a necessity or simply a 
product of the field's past history?  
Despite much discussion, the answers to 
these questions remain important 
challenges for future research. 

 
 Flexible pattern recognition.  Flexible 

pattern recognition is a hallmark of 
biological systems.  The most familiar 
instance is, of course, pattern 
recognition in the nervous system via 
the sensory modalities (vision, audition, 
etc.) but other biological systems 
exhibit sophisticated pattern recognition 
as well.  For example, the immune 
system is able to recognize—in a 
decentralized and distributed way—
patterns of anomalous activities that 
signal the presence of pathogens or 
other disorders that need to be dealt 
with.  Ant colonies similarly can 
collectively sense changes in the 
environment that signal the need for 
reorganization of the colony’s labor 
structure.  Biological cells, genetic 
regulatory networks, networks of 
stomata in plants, and myriad other 
systems can likewise “perceive”, in a 
collective manner, spatio-temporal 
patterns that reflect the changing states 
of their environments and that allow 
them to respond.    These phenomena 
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provide two major questions that beg 
for collaboration among biologists and 
computational scientists:  first, are there 
shared principles or mechanisms for 
pattern recognition among all these 
different systems, and second, can such 
mechanisms be adapted to allow 
computers and computer networks to 
perform analogous kinds of adaptive 
pattern recognition? 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Stochastic Axon Simulator (from Faisal et al., 
Curr. Biol, 15, 1143-1149, 2005). .  Illustration from 
the talk by Simon Laughlin, "The Design of Brains." 

 
 Improved artificial neural networks.  

Artificial neural networks (ANNs) are a 
pre-eminent biologically inspired 
method for automatic pattern 
recognition.  However, to date, such 
networks have not succeeded in 
accomplishing anything close to 
human-level abilities for pattern 
recognition.  Above, we listed a number 
of properties of biological systems that 
might be important in building more 
intelligent and life-like computer 
systems, but it is not clear which ones 
are the most important for improving 
ANNs and other biologically inspired 
algorithms.  Can biologists give 
guidance on what is needed, without 
requiring ANN researchers to build a 
detailed brain?  

 

Integrated and continual learning.  
As mentioned above, biological systems 
not only perform continual pattern 
recognition, they also automatically and 
continually learn.  Unlike in current-day 
computing systems, learning and 
adaptation are integrated in living 
systems at all levels.  How can we best 
develop computing systems and 
networks in which learning and 
adaptation are integral aspects of 
processing?  Can we adapt biological 
principles to accomplish this?  Stepping 
stones towards continual learning might 
include effective use of partial results 
and the building up of multifunctional 
representations.  In the short term, this 
might require "satisficing," with details 
being integrated only over longer time 
scales. 

 
 Automated maintenance and repair.  

Related to the ability of continual 
adaptation and learning is the ability of 
biological systems to continually repair 
themselves to maintain health and 
integrity.  This occurs at all scales, 
ranging from molecular DNA repair 
mechanisms to population effects (e.g., 
the collective maintenance and repair in 
social insect colonies).  Living systems, 
moreover, do not “decommission” their 
components or “go offline” for repair, 
but rather rebuild parts while staying in 
operation.  The notion of automated 
maintenance and repair in computing 
systems is an active topic of research, 
sometimes termed “autonomic 
computing”.  So far progress in this area 
has been limited, but there is likely 
great potential in mining biological 
principles for designing mechanisms for 
such processes.  

 
 Reliable performance from unreliable 

components and constant 
environmental variability.  Another 
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related topic is the remarkable ability of 
living systems to operate in a stable, 
reliable, and predictable way despite the 
unreliability and unpredictability of 
their underlying components and their 
environment.   This theme again runs 
through biological systems at every 
scale, and is becoming increasingly 
important in computer science.   As 
primitive computing components shrink 
to molecular scales, intrinsic 
unreliability, noise, and environmental 
fluctuations will require fundamentally 
new strategies for ensuring the 
reliability and predictability of systems.  
Collaborations between biological and 
computational scientists are likely to be 
a fertile source of new ideas for these 
issues.   

 
 Co-evolution and dealing with 

adaptive adversaries.  The problem of 
dealing with adversaries is at the 
forefront of computing research, as the 
perpetrators of spam, malware, network 
attacks, and other undesired and 
criminal activities become increasingly 
dynamic and able to adapt to 
countermeasures.   This is an area in 
which biological inspiration might be 
particularly helpful, since dealing with 
adaptive adversaries is a constant way 
of life for living organisms.   Several 
related biological ideas are already 
making their way into computer 
science, including host-parasite co-
evolution and immune-system-inspired 
computer security.  We see this as a 
very fruitful area for future cross-
disciplinary collaborations.   

 
 Computing with biomolecules.  The 

field of synthetic biology is beginning 
to find principled ways to design 
computing systems with biomolecular 
elements and reactions.  Can we 
develop more fully the analogs of high-

level data structures and programming 
languages, verification and model 
checking methods, and CAD tools for 
implementing computations with bio-
molecules?   The vast differences 
between traditional computer science 
and biological systems—spelled out 
above in the section titled “Biology 
Versus Traditional Computer 
Science”—present enormous challenges 
to accomplishing what has been called 
“Executable Biology”, but there is 
already a small, dedicated community 
working on these questions, and the 
potential for much additional 
collaboration among computer scientists 
and biologists.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Self-organizing Systems Research.  llustration from the talk by 
Radhika Nagpal. "Collective Intelligence and Self-organizing 
Systems." 

 Towards a theoretical framework for 
biological computation.  The theories 
of information and computation have 
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provided mathematical frameworks for 
formalizing, designing, and reasoning 
about communication and information 
processing in human-created systems. 
These theories use concepts such as 
channel capacity and coding, formal 
languages, abstract machines, space and 
time complexity, and other 
mathematical notions.  To what extent 
can these frameworks be adapted and 
extended to provide a theoretical 
underpinning for studying processes in 
biological systems?   Such a theory 
might be one way in which the disparate 
details of different biological systems 
could be made sense of via common 
building blocks and mechanisms for 
information processing.  

 
 
IV. Potential Barriers for 
Collaboration and for Investigation 
of Shared Principles 
 
The workshop participants identified the 
following issues as some of the potential 
barriers to effective collaboration between 
computer scientists and biologists on the 
questions listed above.   
 
 

 There is a profound lack of 
understanding by biologists of what 

computer scientists can offer, and of 
what the conceptual foundations of 
computer science are.  This is a 
consequence of the lack of background 
knowledge among biologists about 
areas outside of the traditional training 
in chemistry and elementary physics.   

 
 There is a lack of interest on the part of 

computer scientists in understanding 
biological systems.  Computer scientists 
want to build systems that do things; 
they are not typically very interested in 
actual biology, and are often not aware 
of the potential ideas it can offer to 
computer science, or the potential 
contributions computer scientists might 
make to the field of biology, beyond 
algorithms for bioinformatics.  

 
 Biologists tend to want their models to 

be realistic, detailed, and complex.  The 
culture in biology says "building a 
model means getting every detail right.”  
A frequent quote from biologists to 
computer scientists: “We can't model 
this because we don't have enough data 
yet."   This situation prevails despite the 
fact that most biological models serve 
mainly to confirm existing hypotheses, 
rather than to point to new directions or 
predictions.  

  
  
 
 
 
 
 
 
 
 
 
 

 
 

Illustration from the talk by Marc Riedel, "Robust Stochastic Computation with Biomolecular Reactions
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 Computer scientists are often too 
attached to traditional computational 
paradigms, such as logic gates or 
universal Turing machines, and shy 
away from notions of computation that 
they do not feel comfortable with.  

 
 
V. Practical Considerations:  
Routes to Foster the Synthesis of 
Computing and Biological Science  
 
In addition to the list of questions for 
potential collaborative research (above), the 
workshop participants discussed 
recommendations to facilitate and accelerate 
the development of synergy between the 
computing and biological sciences, with an 
emphasis on the training of young scientists 
in both fields.   
 

 Participants unanimously and 
enthusiastically agreed that the 
development of one or more programs 
that specifically solicit proposals 
addressing shared principles between 
the computing and biological sciences is 
a high priority.  Features of such 
programs would include a requirement 
(or at least strong encouragement) for 
explicit collaboration across these 
disciplines, along the lines of the 
questions described in this report.  It is 
essential that the collaborations be 
reciprocal and intellectually equal; that 
is, the work should contribute to both 
computer science and biology.   

 
 Biologists need to be better educated in 

the foundations of computer science, 
and vice versa.  This is obviously a 
long-term effort and will occur over the 
next few generations of scientists.  
However, two short-term strategies to 

facilitate progress are (1) the 
development of cross-disciplinary 
courses at the undergraduate and 
graduate levels; and (2) concrete 
mechanisms to promote the sharing of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mIR 9 as a Master Switch.  Illustration from the talk by 
Steve Treistman, "Molecular Plasticity." 

 
 

graduate students and postdocs between 
different labs/research groups.  
Regarding the first approach, several 
participants pointed out that cross-
disciplinary courses linking biology and 
computer science already exist at many 
institutions.  Mechanisms for facilitating 
the sharing of course materials, syllabi, 
etc. would be very useful for faculty 
trying to develop such courses at their 
own institutions.  Regarding the second 
approach, it was suggested that funding 
agencies could provide short (e.g., 6 
month), fast track fellowships that would 
allow students and postdocs in biology 
or computation to briefly work in the lab 
of their mentors’ collaborators in the 
other field.  Such fellowships could be 
administered as supplements to existing 
cross-disciplinary grants.  
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VI. Workshop Participants 
 

Organizers: 
 

Ralph Greenspan 
Kavli Institute for Mind and 

Brain 
UC San Diego 

Melanie Mitchell 
Computer Science 

Portland State University 

Jo Ann Wise 
Molecular and Microbiology 

Case Western Reserve University 
 

 
 

Participants:  
 

Luis Amaral 
Chemical &  Biological 

Engineering 
Northwestern University 

Chris Bailey-Kellogg 
Computer Science 
Dartmouth College 

John Byrne 
Neurobiology and Anatomy 

U. Texas Med. School, Houston 

Ziv Bar-Joseph 
Computer Science 

Carnegie Mellon Univ. 

Randy Beer 
School of Informatics 

Indiana University 

Tony Bell 
Redwood Center for Theoretical 

Neuroscience 
UC Berkeley 

Hana El-Samad 
Biochemistry 

UC San Francisco 

Tom Henzinger 
Computer and Communication 

Sciences 
EPFL 

Tom Kepler 
Biostat. & Bioinformatics 

Duke University 

Jeffrey Krichmar 
Cognitive Sciences 

UC Irvine 

Dmitri Krioukov 
CAIDA 

UC San Diego 
 

Simon Laughlin 
Department of Zoology 

University of Cambridge 

Eve Marder 
Biology 

Brandeis University 

Olgica Milenkovic 
Electrical and Computer Engineering 

Univ. Illinois, Urbana-Champaign 
 

Partha Mitra 
Cold Spring Harbor Laboratory 

Radhika Nagpal 
Computer Science 
Harvard University 

Ilya Nemenman 
Physics and Biology 

Emory University 

Tomaso Poggio 
Brain and Cognitive Sciences 

MIT 
Marc Riedel 

Electrical and Computer 
Engineering 

University of Minnesota 

Ehud Shapiro 
Computer Science & Applied Math 

Biological Chemistry 
Weizman Institute of Science 

 

Olaf Sporns 
Neuroscience 

Indiana University 

Michael Simpson 
Oak Ridge National Laboratory 

 

 Steven Treistman 
Institute of Neurobiology 
University of Puerto Rico 

 

 

 
Web site links for the organizers and participants as well as slides for most of the 
presentations can be found at the following URL: 
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NSF Workshop on 

Shared Organizing Principles 

In the Computing and Biological Sciences 

 

Program 
Dates: Tuesday & Wednesday May 25th & 26th 2010 

Location: Hilton Arlington, Arlington, VA. 

 
 

DAY 1 (Tuesday May 25th) 

 
7:30–8:15 Registration and continental breakfast 

8:15–8:30 Introductions and welcome 

NSF CISE and BIO personnel 

8:30–8:40 Opening Talk (1): Melanie Mitchell, Portland State University & Santa Fe Institute 

8:40–8:50 Opening Talk (2): Ralph Greenspan, The Neurosciences Institute 

 
Session 1: Information Representation and Information Processing 

9:00–9:10 Michael Simpson, ORNL 

9:10–9:20 Ilya Nemenman, Emory University 

9:20–9:30 Tom Kepler, Duke University 

9:30–9:40 Ehud Shapiro, Weizmann Institute 

9:40–9:50 Chris Bailey-Kellogg, Dartmouth 

9:50–10:00 Olgica Milenkovic, University of Illinois 

10:00–10:10 Tony Bell, University of California, Berkeley 

10:10–10:20 Tomaso Poggio, MIT 
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10:20–10:40 Coffee Break 

 
10:40-11:10 Group Discussion 

 

Session 2: Networks and Communication 

11:10–11:20 Luis Amaral, Northwestern University 

11:20–11:30 Tom Henzinger, EPFL 

11:30–11:40 Radhika Nagpal, Harvard University 

11:40–11:50 Olaf Sporns, Indiana University 11:50–12:00 Dmitri Krioukov, University of California, San Diego 

 12:00–12:20 Group discussion 

 
12:20–1:30 Lunch 

 
Session 3: Synthetic Systems, Design, and Control 

1:30–1:40 Ziv Bar-Joseph, Carnegie-Mellon University 

1:40–1:50 Hana El-Samad, UC San Francisco 

1:50–2:00 Marc Reidel, University of Minnesota 

2:00–2:10 Simon Laughlin, University of Cambridge 2:10–2:20 Partha Mitra, Cold Spring Harbor Laboratory 

 
2:20–2:40 Coffee break 

 
Session 4: Learning and Adaptation 

2:40–2:50 Steve Treistman, University of Puerto Rico 

2:50–3:00 Eve Marder, Brandeis University 

3:00–3:10 John Byrne, University of Texas 
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3:10–3:20 Jeffrey Krichmar, University of California, Irvine 

3:20–3:30 Randy Beer, Indiana University 

 
3:30–4:15 Group discussion 

 
4:15–6:00 Break 

 6:00–?? Working dinner: Discussion in breakout groups 

 
DAY 2 (Wednesday May 26th) 

 8:30–10:00 Breakout groups continue to meet, draft report 

 10:00–10:20 Coffee break 

 10:20–12:00 Breakout groups present reports to whole group; discussion 

 12:00–1:30 Lunch, adjourn  

 
1:30-3:00 Workshop organizers finish report 

 


